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HEME DEGRADATION IN ACUTE BRAIN INJURY:

BENEFICIAL OR DETRIMENTAL TO RECOVERY?

Tiago Prazeres Moreira; M.D., PhD*

ABSTRACT

The mechanisms of heme degradation have re-emerged in the past decade
to become a debated topic in the study of recovery from brain injury caused
by ischemia, trauma or hemorrhage. The major players of heme degradation
in response to acute brain injury are the heme oxygenases 1 and 2 (HO-1,
HO-2) and biliverdin reductase (BVR). The generation of free iron, carbon
monoxide and biliverdin/bilirubin upon heme degradation has been shown to
induce a variety of molecular, cellular and vascular effects which, at present,
remain contradictory. Experimental and clinical evidence of neuroprotective
actions of the heme oxygenases in acute brain injury has been denied by
cytotoxic effects found in neurodegenerative diseases or by recent reports on
the detrimental effects of bilirubin oxidation products (BOXes). In general,
induction of HO-1 upon acute brain injury seems to be neuroprotective, pro-
vided that hemorrhage is absent from the clinical manifestations of the pri-
mary pathophysiological event.

1. INTRODUCTION

Heme is the main constituent of a
variety of hemoproteins such as he-
moglobin, myoglobin, cytochromes,
guanyl cyclase and nitric oxide syn-
thase. During episodes of ischemia/
hemorrhage, edema or trauma to the
brain, heme is released by breakdown
of blood hemoglobin and other hemo-
proteins in the cytoplasm, and/or is re-

leased from mitochondrial cyto-
chromes of neurons and glia1-6. The
heme molecule is subsequently de-
graded by enzymatic and non-enzy-
matic mechanisms, both requiring a re-
ducing agent for the activation of O

2

and reduction of oxidated iron (Fe3+)
to reduced iron (Fe2+). The enzymatic
degradation of heme is catalysed by
the heme oxygenases in the presence
of NADPH7-9, which leads to the for-

* Institut de Physiologie, Faculté de Biologie et Médecine, Université de Lausanne (UNIL), Lausanne, Switzerland

Address for correspondence:
Dr. Tiago Moreira, Département de Physiologie, Université de Lausanne,
Rue du Bugnon 7-Annexe, 2éme étage, CH-1005 Lausanne, Switzerland,
Tel.: Int-41-21-692 55 47; Fax: Int-41-21-692 55 05
E-mail: tiago.more@gmail.com

BSPHM 21-4 - Miolo 3as.pmd 1/15/2007, 4:11 PM6



7Boletim da SPHM Vol. 21 (4) Outubro, Novembro, Dezembro 2006

REVISÃO / REVIEW Heme Degradation in Acute Brain Injury

mation of equimolar amounts of carbon
monoxide (CO), Fe2+ and the α-isomer
of biliverdin (Figure 1).

CO induces vasodilation by relaxa-
tion of vascular smooth muscle cells at
physiologic concentrations11,12 and regu-
lates the activity of downstream effec-
tors such as soluble guanyl cyclase, the
nitric oxide synthases and cyclooxyge-
nases 1 and 213. Biliverdin is immedia-
tely converted into bilirubin by biliver-
din reductase, an enzyme present in
excess in virtually all tissues. A decreased
heme-to-bilirubin ratio is beneficial since
a reduction in heme availability will de-
crease the pro-oxidant effect of heme and
increase the formation of bilirubin,
which has been shown to have a neuro-
protective effect at physiological levels
(see further in biliverdin reductase). As
in other tissues, iron can rapidly be se-
questered by iron-binding proteins like
ferritin, transferrin and ceruloplas-
min14,15. However, free iron (Fe2+) de-
rived from the degradation of hemopro-
teins can be harmful to cells either by
reacting with H

2
O

2
 to form the hydroxyl

radical HO• (Fenton’s reaction) or by
causing lipid peroxidation in cellular
membranes to produce alkoxy and pero-
xy radicals, unless it is oxidized by ceru-
loplasmin and bound to transferrin14,16.

2. THE HEME OXYGENASES

Two major isozymes of heme oxy-
genase (HO-1, HO-2) were identified in
the endoplasmic reticulum of mam-
mals13,17,18. The two isoforms share the
same mechanisms of heme catalysis,
substrate specificity, co-factor require-
ments and cleave the heme molecule at
the α-meso carbon bridge. Heme oxy-
genase –1 is a heat-shock protein (HSP,
also referred to as HSP-32) induced by

heme from aging red blood cells, mito-
chondrial heme-containing proteins and
various sources of cellular stress19-23. A
third isozyme, HO-3, was recently re-
ported 24 but appears to be a non-func-
tional derivative of HO-225,26. HO-1 is
the smaller molecule of three, with 288
a.a., m.w. of 30.000 to 33.000 Da17, while
HO-2 has 316 a.a., m.w. of 36.000 Da18.
HO-1 and HO-2 share 50% similarity
in nucleotide composition and 43% in
a.a. sequences. The HO-1 gene is high-
ly inducible by pro-oxidant and inflam-
matory stimuli such as β-amyloid,
dopamine, H

2
O

2
, prostaglandins, kainic

acid, ultraviolet light, Th1 cytokines, li-
popolysaccharide, among other27-29. The
promotor region of HO-1 contains seve-
ral binding sites for regulatory factors

Figure 1. Degradation of heme and other hemoproteins by the heme oxygenases system, a
reaction requiring O2 and NADPH. Legend: HO – heme oxygenase, BVR – biliverdin
reductase, CO – carbon monoxide, sGC – soluble guanyl cyclase, NOS – nitric oxide
synthases, COX – cyclooxygenase, * – Fenton’s reaction or oxidation by ceruloplasmin
generates oxidated iron (Fe3+). The products of heme degradation, reduced iron, CO and
biliverdin have biological effects that are dependent on the concentration and local envi-
ronment. Biliverdin is further converted to bilirubin by BVR via redox cycling. The
excess availability of BVR balances the tissue concentrations of bilirubin and biliver-
din, reported to be cytoprotective under physiologic concentrations. More recently, bili-
rubin was shown to be oxidized by free radical action originating three products: BOX
A, BOX B and MVM (4-methyl-3-vinylmaleimide) but it is still unclear if heme can be
directly oxidized by free radical action to generate similar molecules10.
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such as heat-shock factor, AP-1, NF-κB
and metal regulatory elements30-32. The
induction of HO-1 is regulated by the
nuclear factor E2-related transcription
factor (Nrf 2), which translocates to the
nucleus and binds to the antioxidant res-
ponse element (ARE) in the promoter
region of the HO-1 gene, in response to
the various HO-1 inducers. The pro-
motor region of the HO-2 gene only
contains a binding site for the glucocor-
ticoid response element33-35. Phospho-
rylation of HO-2 by protein kinase C and
phorbol esters lead to increased HO-2
catalytic activity and subsequent biliru-
bin production36.

2.1. The role of heme oxygenases
in the brain

Among the heme-oxygenases, HO-
2 is the main isozyme expressed in the
adult rat brain and is responsible for
most of the heme-degrading activity in
the brain37-39. Both HO-1 and -2 are ex-

pressed in neurons, with HO-1 display-
ing a restricted distribution across the
brain, the highest expression levels
found in the DG and ventromedial hy-
pothalamus40. On the contrary, HO-2
is widely expressed in neurons of the
forebrain, midbrain, hippocampus (py-
ramidal cells) and dentate gyrus (gran-
ule cells), basal ganglia, thalamus, mi-
tral cells of the olfactory bulb,
cerebellum and brainstem33,40-42. De-
spite the lower number of brain areas
of HO-1 neuronal expression, this en-
zyme is further expressed in glial cells
(astrocytes and microglia). Increased
HO-1 expression in astroglia is conside-
red to be neuroprotective against in-
creased oxidative stress21,43,44. In this re-
gard, expression of HO-1 in neurons is
not responsive to oxidative stress un-
like HO-1 induction in glial and astro-
cytic cells44-48. HO-1 was postulated to
have antioxidant or cytotoxic effects
depending on the intensity and chro-
nicity of HO-1 induction and local, cel-
lular redox conditions49,50. Degradation

HO-1 HO-2

Cell type Neurons Neurons
Astrocytes
Microglia/macrophages

Brain areas Hippocampus (dentate gyrus) Forebrain and midbrain
Ventromedial and paraventricular Hippocampus (dentate gyrus)
nuclei of the hypothalamus Basal ganglia
Thalamus
Olfactory bulb
Cerebellum
Brainstem

Inducing β-amyloid Glucocorticoids
stimuli DopamineH

2
O

2
, other free radicals

Prostaglandins
Kainic acid
UV light

Table 1. Differential expression of HO-1 and HO-2 in different cell types and brain areas. HO-1 is expressed
at low levels in the brain whereas HO-2 is responsible for most of the heme oxygenase activity under
basal conditions. On the contrary, the HO-1 isozyme is responsive to a broader variety of stimuli.
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2.3. Studies in neuronal and
astrocytic cell cultures

In cultured astrocytes from the rat
brain, HO-1 upregulation was shown
to promote mitochondrial sequestra-
tion of non-transferrin-derived iron,
to provoke oxidative damage to mi-
tochondrial lipids, proteins, nucleic
acids, and to enhance cell death and
growth arrest62. Other studies how-
ever, contradicted these findings. In-
deed, HO-1 was reported to protect
cultured cortical astrocytes from oxi-
dative stress resulting from exposure
to hemoglobin and H

2
O

2
44,63. HO-1

overexpression was also reported to
attenuate glucose-mediated oxidative
stress in endothelial cell cultures 64.
Recently, HO-1 induction was found
to protect astrocytes from exposure
to hemoglobin-induced oxidative in-
jury, whereas neurons showed in-
creased cell death when exposed to
hemoglobin, indicating that neurons
may be more vulnerable to heme deg-
radation65.

Some in vitro studies disputed a
protective role of HO-2 by showing
that gene deletion of this isozyme at-
tenuates hemin- and hemoglobin-
mediated oxidative stress in murine
cortical neurons and provokes exten-
sive cell death in astrocytic cul-
tures66,67.

2.4. Studies in HO-1 and HO-2
transgenic mice

The HO-1 knockout mice (-/-) are
born debilitated and die within 3-4
months of birth with massive iron
deposition in the liver and other tis-
sues. Since this accumulation of iron
occurred without elevation of circu-

of heme may also enhance blood-brain
barrier disruption since red blood cell
lysis and edema formation have been
linked to HO-1 overexpression and iron
accumulation51-54.

Under basal conditions, activated
microglia were shown to contain ele-
vated levels of ferritin which bind iron
(Fe3+) released during HO activity
when degrading hemoproteins con-
tained in the engulfed debris55. The fact
that microglia contain higher levels of
ferritin when compared to neurons,
renders the latter more vulnerable to
increased iron-load derived from HO-1
activity55. Several lines of evidence co-
ming from experimental animal mo-
dels and human brain injury studies
show that HO-1 is highly induced after
injury while HO-2 levels remain rela-
tively unchanged. Thus, different pat-
terns of HO-1 expression can be found
in astrocytes, activated microglia or
neurons, depending on the experimen-
tal model.

2.2. Studies in animal models
of brain injury

Following focal brain ischemia in
the Wistar rat, HO-1 immunoreactivi-
ty was mostly detected in neurons and
astrocytes22,56. However, other studies
reported ischemia-induced HO-1 ex-
pression in astrocytes and microglia57

or mainly in microglia58. After trau-
matic brain injury in Sprague-Dawley
rats, HO-1 was mainly induced in as-
trocytes21, but also on microglia59 or
both60. In Wistar rats, HO-1 expres-
sion induced by traumatic brain inju-
ry (TBI) was detected in both glial cell
types61. HO-1 expression thus seems
to be induced mainly in astroglia fol-
lowing acute brain injury.
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lating iron in the blood, it was sug-
gested that the cytoprotective effect
of HO-1 may rely on the efflux of
iron from the tissues into the circu-
lation. Experimental middle cerebral
artery-occlusion (MCA-O) in these
animals did not provoke brain infarts
larger than those observed in con-
trol mice68.

Studies in HO-2 knockout (-/-)
mice suggest that the HO-2 isozyme
is necessary for the recovery of TBI69.
These animals showed delayed mo-
tor recovery as well as evidence of
increased lipid peroxidation follow-
ing TBI39. Another study in the HO-2
knockout mouse also revealed in-
creased neuronal death following fo-
cal ischemia caused by MCA-O69.
Furthermore, cultured neurons from
HO-2 knockout (-/-) mice show in-
creased apoptotic cell death upon
oxidative stress challenge36.

In mice overexpressing HO-2 (+/
+), apoptotic cell-death was reduced
in cortical, hippocampal and cerebel-
lar cell cultures36,70,71. These rats show
a modest (115% of control) increase
in HO-1 mRNA expression in the
brain, with higher heme-degrading
activity (around 150% of control ac-
tivity in non-transgenic mice) and
pronounced HO-1 staining in the py-
ramidal layers of the CA1, CA3, DG
and hilus72.

2.5. Further interactions
of heme-oxygenase-1

HO-1 was shown to stimulate
SOD-1 activity and to decrease O

2
•–

concentrations73. Increased HO-1 ex-
pression was also reported to induce
SOD-2 expression, promoting cyto-
protective effects74,75. SOD-2 was also
identified as a downstream effector
of HO-1 in astrocytes during nitrosa-
tive stress76. Moreover, HO-1 inhibi-
tion by zinc protoporphyrin IX has
been shown to reduce SOD-2 expres-
sion76. The increase in SOD-2 follow-
ing HO-1 activation is supposed to
be compensatory because free-ferrous
iron can exert a pro-oxidant effect on
the mitochondrial compartment77.
Enzymes such as soluble guanyl cy-
clase, cyclooxygenase and nitric ox-
ide synthase require heme for their
functions, and their activity is thus
reduced by HO-1 upregulation. In
addition, COX-1 was shown to accu-
mulate in activated microglia/mac-
rophages during recovery from brain
ischemia or trauma78. Some of the
possible interactions of HO-1 with
other antioxidant and pro-inflamma-
tory, pro-apoptotic enzymes and pep-
tides are summarized in Figure 2.

Figure 2. Actions of increased HO-1 expression in a variety of enzymes induced by oxidative
and cellular injury described in the literature. Legend: HO-1 – heme oxygenase 1,
sGC – soluble guanyl cyclase, COX – cyclooxygenases, * – to date, only shown in
endothelial cells79,80, iNOS – inducible nitric oxide synthase, SOD – superoxide dismu-
tase, BVR – biliverdin reductase, ROS – reactive oxygen species, TNFα – tumor necro-
sis factor alpha. Increases in BVR due to HO-1 overexpression are expected but since
BVR exists in excess in all tissues it is still unclear the exact the degree of HO-1 overex-
pression that can trigger BVR overexpression. TNFα was shown to stimulate HO-1
expression and to co-localize with this enzyme in receptor mediated apoptosis.
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3. BILIVERDIN REDUCTASE

Biliverdin is formed by the oxi-
dative cleavage of the heme molecule
at the α-meso carbon bridge by the
heme oxygenase system7-9. Biliverdin
is then converted to bilirubin by
biliverdin reductase (BVR), a zinc
metalloprotein, coupled with the oxi-
dation of NADH and NADPH, its
co-factors81-83. BVR can yield biliru-
bin at two different values of pH: in
acidic pH (6.7) NADH is the used co-
factor, in basic pH (8.7) NADPH is
the used co-factor. In total, four iso-
mers of biliverdin can be formed from
heme also through non-enzymatic
reactions, the most abundant being
the α-isomer84. Each molecule of bi-
lirubin is reconverted to biliverdin
through oxidation by biliverdin re-
ductase. BVR exists in excess in all
tissues including the brain85-87 and
each molecule of bilirubin is rapidly
oxidized into biliverdin. The high lev-
el of BVR immediately reduces
biliverdin back to bilirubin (redox
cycling), which prevents biliverdin to
accumulate at detectable levels88.

Since the early 1950’s, when the
link between severe unconjugated
hyperbilirubinemia and neurologic
dysfunction in the newborn was scien-
tifically proven89, that bilirubin has
been regarded as a potential threat to
the CNS by clinicians. Bilirubin ence-
phalopathy or kernicterus is characte-
rized by atethoid cerebral palsy, im-
paired upward gaze and deafness.
However, recent studies of bilirubin
metabolism in the brain have shown
that this pigment has a wide array of
neuroprotective actions at physiologi-
cal levels. The neuroprotective action
of bilirubin was proposed to occur via
redox cycling of bilirubin, which in

turn scavenges reactive oxygen spe-
cies. The lack of BVR has been
shown to increase cellular vulnerabil-
ity to oxidative stress 88. The neuro-
protective effects of bilirubin are seen
at low concentrations (about 10 nM),
that is, at the normal endogenous le-
vels in the brain, while kernicterus is
associated with a 1000-fold increase
in bilirubin concentrations.

3.1. Studies in astrocytic and
microglial cell cultures

Treatment of astrocyte cultures
with 50 µM of unconjugated biliru-
bin (equivalent to 148 nM of free
unconjugated bilirubin) was shown to
trigger the release of TNFα, IL1-β
and IL-690 and to activate the MAPK
and NF-κB signalling pathways,
leading to an increase in astrocyte
death91. Similarly, treatment of micro-
glial cultures with 50 or 100 µM of
unconjugated bilirubin was found to
induce microglia activation, stimulate
TNFα, IL1-β, IL-6 and glutamate re-
lease, and to increase microglial cell
death92.

At present, however, it is still un-
clear the exact concentration at which
bilirubin becomes toxic. A growing
body of evidence shows that not only
bilirubin but also biliverdin have po-
tent antioxidant properties93,94, as well
as immunomodulatory (e.g. blocking
IL-2 production) and anti-comple-
ment actions94-98. Intracellular biliru-
bin is capable of inhibiting protein
kinase C, c-AMP dependent protein
kinases, NADPH oxidase and protein
phosphorylation99,100. Physiological
concentrations of bilirubin were
shown to decrease the expression of
pro-inflammatory genes such as
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monocyte chemotactic protein-1
(MCP-1), vascular cell adhesion mole-
cule -1 (VCAM-1) and macrophage
colony stimulating factor (MCSF) in
cultured human aortic endothelial
cells and improved endothelium-de-
pendent vascular relaxation101. Biliru-
bin is also a potent inhibitor of mono-
cyte adhesion to the vascular
endothelium and of chemotaxis102,103.

3.2. Studies in animal models
of brain injury

In the rat brain, BVR was sug-
gested to participate in the first line
of defense against ischemic injury
due to its antioxidant properties
against free radical attack on cellu-
lar membranes11,94,104,105. For ins-
tance, MCA-O in the mouse induced
BVR mRNA and protein expression
within the peri-ischemic cortical ar-
eas, namely in surviving neurons in
cortical layers III and V and in the
caudate nucleus106. Furthermore,
BVR expression was found to be
induced by hyperthermia86 while bi-
lirubin was capable of counteracting
oxidative damage in models of au-
toimmune encephalomyelitis and to
inhibit iNOS expression and NO
production in lipopolysaccharide-
treated macrophages107,108.

3.3. Bilirubin oxidation products
(BOXes)

Bilirubin metabolites provoked by
free radical oxidation were recently
described10. The oxidation of bilirubin
at the two ends of the molecule origi-
nates the isomers BOX A and BOX
B, as well as MVM (4-methyl-3-vi-

nylmaleimide), a previously isolated
product of biliverdin109. Oxidation of
bilirubin with hydrogen peroxide was
shown to produce vasoactive com-
pounds that increase oxygen consump-
tion and contractility of porcine carotid
artery rings10. At present, it is not yet
known if direct oxidation of heme
within hemoglobin leads to the forma-
tion of BOXes or similar molecules
(see Figure 1). The direct application
of BOXes in the exposed cortex of rats
produced a dose-dependent vaso-
spasm in dural and cerebral vessels
lasting up to 24 h, in association with
increased HO-1 gene expression in the
subcortical white matter110.

4. CLINICAL FINDINGS

In the clinical setting, focal brain
ischemia was reported to induce more
pronounced peri-lesional HO-1 ex-
pression in astrocytes and weaker
HO-1 microglial expression within
the first 24 h post-infarction111. Mi-
croglial expression of HO-1 was
more commonly associated with trau-
matic brain injury and subarachnoi-
dal hemorrhage23,48,59,60 but not exclu-
sively, since microglial expression of
HO-1 was also reported following
focal brain ischemia57,58. Thus, HO-1
activity can be induced in microglia
to breakdown hemoproteins con-
tained in foreign engulfed material
during recovery of brain ischemia.

In stroke patients, HO-1 immu-
noreactivity was mainly observed in
astrocytes, occurring within the first
24 h post-infarction, increasing to
moderate intensity after few weeks
and returning to baseline levels after
several months. HO-1 expression in
microglia was weaker after focal
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Model In vitro cultures In vivo models

Cell type Astrocytes Neurons Vascular Transgenic mice Brain injury
endothelial cells in the rat

HO-1 induction Contradictory Toxic (Hb) Protective Focal ischemia:
by exogenous Toxic (iron) (glucose overload expressed in

stimuli Protective and oxidative neurons, astrocytes
(Hb, H

2
O

2
) stress) and microglia,

TBI: expressed
in astrocytes
and microglia

HO-1 knock-out Massive iron
deposition in the
liver and death

HO-2 knock-in Protective

HO-2 knock-out Protective (Hb) Protective (hemin) Increased neuronal
death (upon

MCA-O and TBI)

Bilirubin Protective, Protective (EAE)
(physiologic [ ]) anti-inflammatory

Bilirubin (UB) Toxic (also Toxic
(increased [ ]) for microglia)

BVR Expressed in
neurons (MCA-O)

BOXes Toxic Vasospasm

Table 2. Contradictory results of experimental studies employing markers of heme degradation. Legend: HO – heme oxygenases, Hb – hemoglobin,
H

2
O

2
 – hydrogen peroxide, TBI – traumatic brain injury, MCA-O – middle cerebral artery occlusion, UB – unconjugated bilirubin, [ ] – concen-

trations, EAE – experimental autoimmune encephalitis, BVR – biliverdin reductase, BOXes – bilirubin oxidation products. In parenteses ( ),
stimuli applied to cell culture or experimental animal model.

brain ischemia and also appeared in
the first 24 h. Weak-to-moderate HO-1
staining was still present in some neu-
rons months after the infarction. The
results of this clinical study also
pointed that the presence of hemor-
rhage as a complication of the initial
injury was predictive of HO-1 expres-
sion in microglia111.

In traumatic brain injury patients,
HO-1 expression was mainly located
in activated microglia in the lesion
borders by 6 h, increased within the
first 24 h and remained detectable
until 6 months post-TBI111. Rare,
faintly stained HO-1+ astrocytes were
also observed until 16 days post-TBI,

disappearing over the course of 3
weeks. Weak-to-moderate HO-1 ex-
pression was also found in neurons
around the lesion between 6 and 24 h
following TBI.

In patients recovering from sub-
arachnoidal hemorrhage, oxidation
products of bilirubin and biliverdin
(BOXes) were found to increase in the
cerebrospinal fluid, peaking at about
6 to 8 days, and to be associated with
delayed vasospasm 112. It has been thus
hypothesized that BOXes produced in
blood clots are capable of inducing
constriction of vascular smooth mus-
cle cells and to damage the contractile
elements of these cells109. However,
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carbon monoxide resulting from heme
oxygenase activity was found to de-
crease vasospasm following
TBI12,48,113. The antioxidant effect of
bilirubin at low concentrations may
also counteract vasospasm by decreas-
ing oxidative stress, which suggests a
regulation of vasospasm by BOX and
bilirubin balance109.

Finally, increased brain iron seques-
tration and oxidative mitochondrial in-
jury were reported in a variety of neu-
rological diseases caused by
neurodegeneration (Alzheimer’s dis-
ease, Parkinson’s disease, progressive
supranuclear palsy), metabolic distur-
bances (PANK-2 deficiency, acerulo-
plasminemia) and immunologic/infec-
tious diseases (multiple sclerosis,
HIV-1 encephalitis) 11, 114. This is sug-
gestive of prolonged HO-1 activation
and iron production leading to en-
hanced neurodegeneration in these pa-
thologies114. Interestingly, research in
Alzheimer’s disease demonstrated a
number of single-point mutations in
amyloid precursor proteins (APP) bin-
ding HO-1 and HO-2 that decrease over-
all HO activity, lower bilirubin availa-
bility and increase neurotoxicity115.

5. THERAPEUTIC
IMPLICATIONS

At present, the modulation of HO-1
activity and iron chelation are the main
therapeutical approaches under inves-
tigation. HO-1 was found to be modu-
lated by metalloporphyrin inhibitors of
HO activity116, but so far, results have
contradicted the neuroprotective role of
HO-1. For instance, the administration
of HO inhibitors like tin protoporphy-
rin were able to decrease damage to the
hippocampus caused by ischemia, he-

morrhage or trauma and to reduce brain
edema117-119. This is in contrast with the
observed reduction in SOD-2 expres-
sion caused by tin protoporphyrin76 (see
section 2.5), which would potentially
decrease antioxidant scavenging and
render the hippocampus vulnerable to
oxidative stress.

Following subarachnoidal hemor-
rhage, one can speculate that HO-1
inhibition may decrease the formation
of bilirubin and decrease the forma-
tion of vasospasm-inducing BOXes.
Iron chelators like deferoxamine were
also capable of decreasing edema fol-
lowing intracranial bleeding117,120.
Another iron chelator, DP-b99, is
currently under study in a stroke mul-
ticenter clinical trial121.

Another therapeutic possibility
relies on the modulation of the NO
synthases, which could yield addi-
tional effects on HO-1 activity. In this
regard, s-nitroso-n-acetylpenicil-
lamine, a known activator of NO syn-
thase, was found to increase HO-1
activity122. Cobalt protoporphyrin
(CoPP) was also shown to stimulate
HO-1 activity, to decrease iNOS and
increase eNOS expressions, improv-
ing vascular relaxation in the pres-
ence of diabetic vasculopathy123.

Thus, even though it is still under
investigation whether HO-1 activity
and its products are beneficial or det-
rimental during recovery of focal
brain ischemia, the pathways of heme
degradation may constitute an inte-
resting therapeutical target.

6. Conclusions

The novel findings on heme deg-
radation mechanisms and its implica-
tions on the recovery of acute brainFigura 9
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injury are dependent on the initial in-
sult to the brain. In general, HO-1 in-
duction seems to be beneficial in situa-
tions of ischemia and trauma, but not
in situations of hemorrhage to the brain
parenchyma, since it elicits a more
pronounced and protracted inflamma-
tory response in local microglia and
promotes the oxidation of heme and
bilirubin by free radicals. The bene-
fits of HO-1 activity also rely on the
sequestration of heme, which reduces
the activity of pro-inflammatory en-
zymes that require heme for their ac-
tivity such as NOS and COX. Evi-
dence for a neuroprotective role of
HO-1 in acute brain injury seems con-
sistent with experimental findings in
vivo, whereas some in vitro studies
indicate otherwise. Therapeutical in-
vestigations show a beneficial effect
of HO-1 inhibition and iron chelation
in the reduction of edema and delayed
neurodegeneration induced by brain
injury. These contradictory findings
may reside on the duration and locali-
zation of HO-1 upregulation. The pro-
oxidant effect of HO-1 has been at-
tributed to iron release and to the
inability of neurons, but not of astro-
cytes, to sequester and detoxify excess
iron. On the long run, persistent HO-1
activity may lead to progressive iron
deposition in neurons and astroglia, as
reported in a variety of chronic neuro-
degenerative disorders, and to oxida-
tive stress in mitochondria. Thus, the
development of therapies directed to
heme degradation must take into ac-
count the beneficial effects of HO-1
and the detrimental, pro-oxidant ac-
tions of free radicals and free iron in
the acute phase of brain injury. Results
from clinical trials with iron chelators,
among others, are thus awaited with
renewed interest.
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